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Abstract
Using a polynomial pencil of Lax pairs we give a new bi-Hamiltonian
formulation for the Landau–Lifshitz equation hierarchy and find a new
recursion operator related to it.
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1. Introduction

In the past decades a number of infinite-dimensional nonlinear dynamic equations (systems)
have been discovered which attracted great interest, the so-called soliton equations, such as the
Korteweg-de Vries equation, the nonlinear Schrödinger equation, the sin-Gordon equation,
etc, see [5, 6]. Their characteristic property is that they can be regarded as the compatibility
condition for pairs of linear operators (L-A pairs or Lax pairs). As a result from the above
representation as compatibility condition (Lax representation) it has been discovered that the
soliton equations are completely integrable Hamiltonian systems. They always appear in
hierarchies, have infinite series of conservation laws, etc [6]. But probably the most important
fact regarding the soliton equations is that new techniques for obtaining large families of
exact solutions has been developed, based on the Lax representations for these equations. So
nowadays the simplest soliton equations (usually the first nonlinear equations that appear in the
corresponding hierarchies) are famous and considerable literature is dedicated to each of them.
Most of the soliton equations also have important physical applications and the first interest to
them was almost entirely motivated by it, but today the mathematical importance of the soliton
equations sometimes eclipses the physical one, since the possibility of obtaining nontrivial
exact solutions for nonlinear partial differential equations is a very rare phenomenon.

One of the famous soliton equations is the so-called Landau–Lifshitz equation (LLeq):

St = S × Sxx + S × R(S), lim
x→±∞ S(x, t) = (0, 0, 1), (1)
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where S(x, t) is a three-dimensional vector field, depending on one spatial variable x and the
time t, taking its values on the two-dimensional unit sphere; R = diag(r1, r2, r3) is a constant
diagonal matrix with diagonal elements ri � 0, and the vector field R(S) has components riSi .
The LL equation is a classical limit of a quantum system describing a ferromagnetic chain in
which the nth atom has a spin sn and interacts only with the nth and n+1th neighbour, see [13].
As a soliton equation it is famous because in its study there has been applied for the first
time the L-A pair which was elliptic in the spectral parameter (the pairs used before were
polynomial or rational in the spectral parameter), cf [6, 28]. It is also closely related to some
finite-dimensional integrable systems, see [30]. Though the LL equation has been intensively
studied, there are still some points that deserve to be cleared up. One of them is related to the
fact that the LL equation also admits an L-A pair that is polynomial in the spectral parameter.
So there are two different ways of approaching the Landau–Lifshitz equation, the questions
of integrability, conservation laws, etc and it is not known if they are equivalent or not. More
specifically, the polynomial pair has still not been applied to find exact solutions and it is not
known if it will give the same class of solutions as the elliptic pair.

Another point is that when ri → 0 the LL equation transforms into the Heisenberg
ferromagnet equation (HFeq), see (13). The HFeq is gauge equivalent to the nonlinear
Schrödinger equation (NLSeq) [6, 10, 35] and is nearly as famous as the NLSeq itself.
However, some of the objects related to the LLeq do not go to the analogous objects for the
HFeq when we pass to the limit ri → 0 and the reason for this is not completely understood.

In a sequence of papers [2, 3, 33], we initiated the study of polynomial pencils of Lax
pairs leading to hierarchies of soliton equations that include the O(3) chiral system equations
and the Landau–Lifshitz equation. Our interest was motivated by what was said in the above,
that is, by the problem whether the elliptic L-A pairs and the polynomial L-A pairs are
equivalent. Certainly, the first question one can ask is whether the hierarchies of equations
obtained via polynomial pencil and via elliptic pencil are equivalent, that is, whether the
vector fields corresponding to one of the hierarchies is a finite linear combination of the vector
fields corresponding to the equations from the other hierarchy. To this end the study of the
corresponding recursion operators is needed. We have found the recursion operators for the
chiral fields equations hierarchy (CF hierarchy) related to the polynomial pencil in [33] and
now we consider the recursion operators for the polynomial pencil in which the LLeq is
included.

The main results of the present paper are the following:

• The recursion operators for the Landau–Lifshitz equation hierarchy related to a polynomial
pencil (LLp hierarchy) are calculated—section 5, proposition 6, formula (86).

• It is shown that the dual of the recursion operator for the LLp hierarchy is a Nijenhuis
operator and the manifold of potentials has structure of a P–N manifold (section 6,
theorem 4).

• It is proved that the LLp hierarchy consists of Hamiltonian vector fields and these fields
have commuting flows. This fact results from the existence of the P–N structure but we
provide an alternative proof (section 6, theorem 4, corollary 3).

The properties listed in the last two items are characteristic for the integrable systems (soliton
equations), [6, 17], in other words, our results prove that the polynomial pencil we investigate
has the usual features of the pencils of L-A pairs used in soliton equations theory.

The paper is organized as follows. In section 2 we introduce the hierarchy of the equations
related to LLeq when one uses polynomial pencil (to distinguish the elliptic case and the
polynomial one we call it the LLp hierarchy). In this section, we discuss some non-canonical
algebraic structures, paying a special attention to the case of the algebra so(4), since we shall
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need later the properties of the new Lie algebra brackets that can be defined on it. In sections
4 and 5 we study the LLp hierarchy and obtain the corresponding recursion operators. Since
in their definition appears the inverse of some other operator, we discuss the existence of this
inverse. We also compare the recursion operators one gets via elliptic and via polynomial
pencil. In the last section (section 6) we give a geometric interpretation of the recursion
operators we have obtained. More specifically, we find two compatible Poisson structures
such that the LLp hierarchy consists of equations that are Hamiltonian for both these structures
(with different Hamiltonians of course). These Poisson structures are closely related to the
non-canonical brackets on so(4) we described above. Not surprisingly, we are able to prove
that the dual of the recursion operator relates the two Poisson structures, that is, we prove that
we have the already typical situation when the integrable hierarchy of equations corresponds
to a hierarchy of fundamental fields of a Poisson–Nijenhuis structure on the manifold of
potentials.

Now, few words about the terminology. Usually, the soliton equations appear in
hierarchies, which have the form:

q̇(t) = Xn(q(t)) = Pq(γn)(q(t)), q ∈ M

γn+1 = �(γn), n = 0, 1, 2 . . . ,
(2)

where

• M is an infinite-dimensional manifold of some functions defined on the real line, called
the manifold of potentials, that is, the point q is actually a function q(x) and the above
equations are partial differential equations.

• γn are closed 1-forms on M (even exact forms, that is, γn = −dHn, where Hn are the
Hamiltonians of the equations (2), the last being true at least starting from some n).

• q �→ Pq : Hom(T ∗
q (M), Tq(M)) is a Poisson tensor field, see (88).

• Xn are vector fields (dynamic systems on M).

• q �→ �q : End(T ∗
q (M)) is a field of operators.

If we have the above situation, we shall say that we have a recursion operator �. Sometimes
the hierarchy is described in terms of N = �∗, then it is also called a recursion operator, as
a matter of fact, usually one has P ◦ � = N ◦ P . We say that the hierarchy (2) admits a
bi-Hamiltonian formulation or simply is bi-Hamiltonian, if it can be written in a Hamiltonian
form using another Poisson tensor field Q (different from P) and the Poisson fields P and Q
are compatible, that is, if their Schouten bracket [P,Q]S vanishes, see (89). Usually one has
relations of the type:

Q(γn+1) + P(γn) = 0, n = 0, 1, 2 . . . , (3)

which we call chain systems. Chain systems are obtained from the pencils of Lax pairs for the
hierarchy (3), but can be obtained also independently. In case the hierarchy is bi-Hamiltonian
and one can invert Q, one can construct � = Q−1 ◦ P and it can be shown that N = �∗

is a Nijenhuis tensor (also called hereditary operator) and P,N endow M with (Poisson–
Nijenhuis structure (P–N structure); see [16, 17] for more profound discussion. Thus the P–N
structure implies that N is a hereditary operator and N∗ = � (or N) is a recursion operator. We
note also that sometime different authors use the terms recursion operator, hereditary operator,
Nijenhuis operator in somewhat different ways.
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2. Preliminaries

In order to present the LLp hierarchy, we need some facts and notations. Let so(4) be the
algebra of 4 × 4 skew-symmetric matrices over C. For u ∈ C

3 we write

u → {u}I =




0 u1 u2 u3

−u1 0 u3 −u2

−u2 −u3 0 u1

−u3 u2 −u1 0


 (4)

v → {v}II =




0 v1 v2 −v3

−v1 0 v3 v2

−v2 −v3 0 −v1

v3 −v2 v1 0


 . (5)

Every element A ∈ so(4) can be written into the form

A = {u}I + {v}II , (6)

and this representation corresponds to the well-known splitting of so(4) into the direct sum of
two so(3) algebras. In other words, the subalgebras

GI = {{u}I : u ∈ C
3} ⊂ so(4)

GII = {{u}II : u ∈ C
3} ⊂ so(4)

(7)

are both isomorphic to the algebra so(3) and are ideals in so(4). As a consequence,
[GI ,GII ] = 0. The polynomial pencil of Lax pairs we are going to study is then written as
follows:

L ≡ ∂

∂x
− U, Mn ≡ ∂

∂t
− Vn

U(λ) = 1

2
A(λ + J )

(8)

Vn(λ) = 1

2
(λnB0 + λn−1B1 + · · · + Bn)(λ + J )

n = 0, 1, 2, . . . ,

(9)

where

A = {S}I , Bn = {bn}I + {cn}II , (10)

J is the diagonal matrix

J = diag(−j1 − j2 + j3,−j1 + j2 − j3, j1 − j2 − j3, j1 + j2 + j3), (11)

and S(x) ∈ R
3 is a smooth vector field depending on one spatial variable, taking values on the

unit sphere S
2 = {S : S2 = 1} and tending fast enough to some limit value S0 when |x| → ∞.

Of course, the derivatives of S(x) go to zero when |x| → ∞. Usually S0 is assumed to be
(0, 0, 1), which we shall also assume. We require a condition that ensures the above, but it is
stronger, we assume that

S(x) is a function taking its values on the sphere S
2, such that the components of S(x) − S0

are Schwartz-type functions on the line. We write all this shortly as

(sw) lim S(x) = S0 = (0, 0, 1). (12)

Two famous infinite-dimensional integrable systems exist on the space MS of the functions
S(x), satisfying the above conditions, which attracted considerable attention in the past
decades:
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(i) The Heisenberg ferromagnet equation (HFeq):

St = S × Sxx. (13)

(ii) The Landau–Lifshitz equation (LLeq) we introduced in (1).

Lax pairs for both HFeq and LLeq can be obtained in the form (8), so we look now more
closely into this hierarchy of evolution equations. Let us denote the set of the matrices of the
type A = {S}I , with potential S(x) belonging to MS by MI

S . In other words, MI
S ⊂ so(4)

is the manifold of potentials. In [3] we have found that the set of the nonlinear evolution
equations, corresponding to the above Lax pairs, have the form:

At = (Bn)x − 1
2 (AJBn − BnJA), (14)

where the matrix functions Bn satisfy the following infinite system of equations which we
shall call the LLp chain system (‘p’ to denote that it is obtained through polynomial pencil):

[A,B0] = 0

[A,Bn+1] = 2(Bn)x − (AJBn − BnJA), n = 0, 1, . . . .
(15)

The equations (14) can be written also into the equivalent form

At = 1
2 [A,Bn+1]. (16)

The hierarchy (14) or (16) is the Landau–Lifshitz hierarchy of evolution equations, or simply
an LL hierarchy, but as we need to distinguish hierarchies obtained through different pencils
we call it an LLp hierarchy. Of course, the above relations can be written also in terms of the
vector fields S, bn and cn and take the form:

• The LLp hierarchy of evolution equations:

St = (bn)x − S × K(cn), n = 0, 1, 2, . . . , (17)

or

St = −S × bn+1, n = 0, 1, 2, . . . . (18)

• The LLp chain system
S × b0 = 0

S × bn+1 = −(bn)x + S × K(cn)

(cn)x = −K(S × bn) + K(S) × cn

n = 0, 1, . . . .

(19)

In the above expressions K is the diagonal matrix

K = diag(j1, j2, j3), (20)

where ji are the same as in the definition of J and (K(a))i ≡ jiai . Below, when same relations
are expressed through 4 × 4 matrices in so(4), we shall say that we have matrix representation
of the hierarchies, equations etc; when expressed in terms of vectors, we shall say that we
have vector representation.

It can be shown that the LLp chain system possesses a solution at least if we begin with
b0 = S, c0 = 0. We discuss this solution later, now we just note that with this choice the
second nontrivial equation of the hierarchy is the Landau–Lifshitz equation

St = (b1)x − S × c1 = S × Sxx − S × R(S), (21)

where R = −K2, that is,

R = diag(r1, r2, r3), ri = −j 2
i , i = 1, 2, 3. (22)

This means that in order to obtain the LL equation the entries of K must be purely imaginary.
The equations (14) and (15) reveal the importance of a special Lie algebra structure, which
we shall introduce below.
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3. The linear pencil of Lie brackets over so(4) and its properties

3.1. The linear pencil of Lie brackets over so(n)

Let so(n) (n > 2) be the Lie algebra of skew-symmetric n × n matrices (the considerations
below are the same both for R and C, so we do not specify the field of the numbers). Let J be
some fixed symmetric matrix. We define then the following bi-linear skew-symmetric map:

[ , ]J : so(n) × so(n) → so(n)

[X, Y ]J = XJY − YJX.
(23)

It is easy to check that [X, Y ]J is a Lie bracket. The vector space so(n) endowed with the
bracket [ , ]J is a Lie algebra, which we shall denote by so(n)J . But since the choice J = 1
leads to the usual Lie algebra structure, in this case we write just so(n). As a matter of fact, we
have here the so-called linear pencil of Lie brackets (also called linear bundle of Lie brackets)
related to the algebra so(n), because for each symmetric J we have a Lie bracket. We remind
some facts about these structures; for more detail, see [34]. Since [ , ]J1 + [ , ]J2 = [ , ]J1+J2 , the
new brackets define compatible Poisson tensors on the dual so∗(n), a fact that is crucial for the
construction we are going to present. Also, (X, Y ) �→ [X, Y ]J is a 2-cocycle for the adjoint
representation of so(n) (with its usual structure) and this cocycle is a ad-coboundary, since

[X, Y ]J = adXα(Y ) − adY α(X) − α([X, Y ]), (24)

where α ∈ End(so(n)) is given by

α(X) = 1
2 (XJ + JX), (25)

and, as usual, adX(Y ) ≡ [X, Y ]. In case the algebra is so(4), and J is as in (11), the cocycle
α has the following properties, which we shall use later.

Proposition 1. Let J be the diagonal matrix, introduced in (11). Then the map α, defined in
(25) interchanges the two so(3) subalgebras of so(4). More precisely,

α({u}I ) = −{Ku}II , α({u}II ) = −{Ku}I , (26)

where K = diag(j1, j2, j3).

3.2. The algebras so(4)J , invariant bi-linear form

As is well known, non-degenerate invariant symmetric bi-linear forms over Lie algebras
play an important role in the construction of the so-called Poisson–Lie brackets. Provided
such a form is given we can identify the algebra G with its dual space G∗ and the adjoint
representation X �→ adX with the coadjoint representation X �→ −ad∗

X. Among the algebras
so(n) the algebra so(4) is quite exceptional. The point is that on it one can define an inner
product, which is invariant simultaneously under all the Lie algebra structures in the pencil
introduced above, see [34]. Since our Lax pairs lie in so(4) we shall concentrate on this
algebra.

Let J be some fixed symmetric 4 × 4 matrix and α be the 1-cocycle defined by it. The
algebra so(4) is semisimple but not a simple one. A finite-dimensional algebra G (over R or
C) is semisimple if its Killing form B(X, Y ) is non-degenerate. If the algebra G is simple each
invariant symmetric bi-linear form is proportional to B. For example, if G = so(n), n > 4,
the form tr(XY ) is symmetric, non-degenerate and invariant. It is well known that B(X, Y ) is
proportional to tr(XY ). For the algebra so(4) the Killing form is also proportional to the trace
form, but there are also another symmetric non-degenerate invariant bi-linear forms which are
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not proportional to the Killing form. In order to introduce such a form on G = so(4) let us
define the linear map T : so(4) → so(4)

(T (X))ij = 1
2εijksXks 1 � i, j, k, s � 4. (27)

In the above expression εijks is the skew-symmetric Levi–Cevita symbol and the rule about
the summation over repeating indices is assumed. One proves directly some useful properties
of B, T and α.

Proposition 2. The linear map T has the properties:

(i) T is involutive:

T 2 = idso(4). (28)

(ii) T is symmetric with respect to the Killing form:

B(T (X), Y ) = B(T (Y ),X). (29)

(iii) [T (X), T (Y )] = [X, Y ] and the two so(3) subalgebras of so(4) are invariant under the
action of T :

T ({u}I ) = {u}I , T ({u}II ) = −{u}II . (30)

(iv) For arbitrary symmetric matrix J , the form

(X, Y,Z) �→ B(XJY − YJX, T (Z)) = B
(
adJ

X(Y ), T (Z)
)

(31)

is 3-cocycle for the trivial representation of so(4), in particular, the form B([X, Y ], T (Z))

is 3-cocycle.
(v) The linear map α is symmetric with respect to the Killing form:

B(α(X), Y ) = B(X, α(Y )); X, Y ∈ so(4). (32)

(vi) T ◦ α = −α ◦ T .

With the help of T we define another symmetric bi-linear form

BT (X, Y ) ≡ B(X, T (Y )), X, Y ∈ so(4). (33)

It can be proved that

Proposition 3. BT is a symmetric non-degenerate bi-linear form, invariant with respect to the
adjoint action of so(4)J .

Remark 1. Note that there is no contradiction here because BT is not the Killing form of
so(4). As a matter of fact, if BI and BII are the Killing forms of the two so(3)-subalgebras of
so(4), each extended as zero on the other one, then BT = BI − BII , while the Killing form B
equals BI + BII .

From the properties of T and α, listed in proposition 2, we also get

Proposition 4. The linear map α introduced in (25) is skew-symmetric with respect to the
form BT , that is,

BT (α(X), Y ) + BT (X, α(Y )) = 0; X, Y ∈ so(4). (34)

Corollary 1. The form (X, Y ) �→ �J (X, Y ) = BT (α(X), Y ) is skew-symmetric. With respect
to it the ideals GI and GII and the ‘graphs’,

�I = {A + α(A);A ∈ GI }
�II = {A + α(A);A ∈ GII },

(35)
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are isotropic subspaces. In particular, if J is as in (11) and if j1j2j3 	= 0, the form �J (X, Y )

is a symplectic form and GI ,GII , �I , �II are Lagrangian subspaces.

We note also that for arbitrary a, b ∈ C
3

B({a}I , {b}I ) = BT ({a}I , {b}I ) = −8〈a, b〉
B({a}II , {b}II ) = −BT ({a}II , {b}II ) = −8〈a, b〉 (36)

B({a}I , {b}II ) = BT ({a}I , {b}II ) = 0,

where 〈a, b〉 =
3∑

i=1
aibi .

4. The LL hierarchy, obtained via polynomial pencil

Let us consider now the LLp chain system (15). Using the properties of the cocycle α, we first
cast it in the following form:

[A,F0] = 0
1
2 [A,Fn+1] = (Fn)x − 1

2 [A, α(Gn)]

(Gn)x − 1
2 [α(A),Gn] + 1

2α([A,Fn]) = 0

n = 0, 1, 2, . . .

(37)

A = {S}I , Fn = {bn}I , Gn = {cn}II , (38)

or, equivalently, [3]:

S × b0 = 0

S × bn+1 = −(bn)x + S × K(cn)

(cn)x − K(S) × cn = −K(S × bn)

n = 0, 1, 2, . . . .

(39)

Here, as in the rest of the text, K = diag(j1, j2, j3). It is known, see [3], that the LLp chain
system has the following solution (obtained recursively):

b0 = S, c0 = 0

b1 = S × Sx, c1 = K(S)

bn+1 = bS
n+1 + S

∫ x

±∞

〈
bS

n+1, Sx

〉
dx

bS
n+1 = �±

(
bS

n

)
+ (K(cn))

S

(40)

cn =
n∑

q=1

(−1)q−1K(q)(bn−q)

n = 1, 2, . . . .

(41)

Below we explain the meaning of the notations and quantities that appear in the solution. First,
the superscript S means that we take the projection to the space orthogonal to S, that is,

aS ≡ a − 〈a, S〉S = −S × (S × a). (42)
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Next, the sequence of diagonal matrices K(n), n = 1, 2, . . . is constructed recursively, starting
from K(1) ≡ K . More specifically, the matrices K(n) are obtained from the requirement that
for arbitrary a and b they satisfy the following equations:

K(1) ≡ K

K(1)(a) × K(1)(b) = K(2)(a × b)

K(1)(a × K(1)K(1)(b)) + K(1)(a) × K(2)(b) = K(3)(a × b)

K(1)(a × K(1)K(2)(b)) + K(2)(a × K(1)K(1)(b)) + K(1)(a) × K(3)(b) = K(4)(a × b)

. . . . . . . . . . . . . . . . . . . . . . . .
n−2∑
i=1

K(i)(a × K(1)K(n−i−1)(b)) + K(1)(a) × K(n−1)(b) = K(n)(a × b)

n = 3, 4, . . . . (43)

The family of diagonal matrices K(n) is well defined, see [3], and the entries K
(n)
i , i = 1, 2, 3

of K(n) are homogeneous polynomials of degree n in the variables j1, j2, j3. For example, the
first members of the family K(n) are

K
(1)
1 = j1, K

(2)
1 = j2j3, K

(3)
1 = j1

(
j 2

2 + j 2
3

)
, K

(4)
1 = j2j3

(
2j 2

1 + j 2
2 + j 2

3

)
K

(1)
2 = j2, K

(2)
2 = j1j3, K

(3)
2 = j2

(
j 2

1 + j 2
3

)
, K

(4)
2 = j1j3

(
j 2

1 + 2j 2
2 + j 2

3

)
K

(1)
3 = j3, K

(2)
3 = j1j2, K

(3)
3 = j3

(
j 2

1 + j 2
2

)
, K

(4)
3 = j1j2

(
j 2

1 + j 2
2 + 2j 2

3

)
.

(44)

Note that KK(2) = j1j2j31 and that if K = 1, all the matrices K(n) are proportional to
1. If we already have the matrices K(n), it can be shown that cn is expressed as shown in
(41) through bs , 0 � s � n − 1. We shall assume that the components of bn and cn are
polynomials in the components of S, Sx, Sxx, . . . . Similar facts are typical in the theory of
the soliton equations. However, one proves them later, after more careful examination of the
properties of the corresponding recursion operators, see for example [9] for the case of the
Zakharov–Shabat system and its gauge-equivalent, or follow from some other considerations,
usually related to the auxiliary spectral problems. If we take such dependence on S(x) and its
derivatives as granted, then the matrices Bn have the same behaviour at +∞ and −∞:

lim
x→−∞ Bn(x) = lim

x→+∞ Bn(x). (45)

Finally, the operators �± are given by the formula

�±(X(x)) ≡ S × ∂

∂x
X(x) + (S × Sx)

∫ x

±∞
〈X(x), Sx〉 dx, (46)

and are the recursion operators for the FH chain system, familiar from the study of the
Heisenberg ferromagnet equation (see for example [6, 10] or [1]). The FH chain system has
the form

S × b0 = 0

S × bn+1 = −(bn)x (47)

n = 0, 1, . . .
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and can be obtained as a limit case of the LLp chain system putting K = 0, cn = 0. In other
words, the solution of (47) is

b0 = S, b1 = S × Sx

bS
n+1 = �±

(
bS

n

)
bn+1 = bS

n+1 + S
∫ x

±∞

〈
bS

n+1, Sx

〉
dx

n = 1, 2, . . . .

(48)

Coming back to the LLp chain system, the first few members of the solution are

c1 = K(S)

b2 = Sxx − K2(S) + hLLS

c2 = K(S × Sx) − K(2)(S)

b3 = −S × Sxxx + S × K2(Sx) + K2(S × Sx) + hLLS × Sx − 〈K2(S × Sx), S〉S
c3 = K(b2) − K(2)(b1) + K(3)(b0)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (49)

where

hLL ≡ 1
2 〈Sx, Sx〉 − (

1
2 〈K2(S), S〉 − 1

2 〈K2(S0), S0〉
)
. (50)

The notation hLL is chosen because hLL is the Hamiltonian density for the LL equation with
respect to the so-called first Hamiltonian structure on MS (see the first equation in (110)).
This means that the Hamiltonian function is equal to

HLL =
∫ +∞

−∞
hLL(S(x), Sx(x)) dx. (51)

It is interesting to note the HF equation can be embedded in the LLp hierarchy not only if we
set K = 0, but also if we set K = 1. Then the HF equation is the second nontrivial equation
in the hierarchy. The corresponding chain system, to which we refer as the HFI chain system,
is

S × b0 = 0

S × bn+1 = −(bn)x + S × cn

(cn)x − S × cn = −S × bn

n = 0, 1, . . . ,

(52)

and as far as we know, never it has been considered in relation to the HF equation. One can
solve the HFI chain system but, as can be expected, the solution does not yield new equations.
Indeed, if the nth equation of HFI is St = Yn(S, Sx, . . .) and the nth equation of the HF
hierarchy is St = Xn(S, Sx, . . .), then Yn is a linear combination with coefficients that do not
depend on x (but depend on n) of X1, X2, . . . , Xn. This of course can be seen directly from
the pencil of the Lax pairs; however, for reasons that will become clear later, we do it in terms
of the chain system. When K = 1, all the matrices K(s) = ks1, where ks are positive integers,
obtained recursively as follows:

k1 = k2 = 1

kn+2 = k1kn + k2kn−1 + · · · + kn−1k2 + knk1 + kn+1 (53)

n = 1, 2, . . . .
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For example, k3 = 2, k4 = 4, k5 = 9, k6 = 21. Then for n = 1, 2, . . . we get

S × bn+1 = −(bn)x + S ×
n∑

s=1

(−1)s−1ksbn−s , (54)

and therefore,

bS
n+1 = �±

(
bS

n

)
+

n∑
s=1

(−1)s−1ksbS
n−s

bn+1 = bS
n+1 + S

∫ x

±∞

〈
bS

n+1, Sx

〉
dx.

(55)

Since as before b1 = S × Sx , the elements of the new hierarchy are linear combinations with
constant coefficients of the elements of the hierarchy HF. We can also try to find a recursion
operator here. From the HFI chain system we get

bS
n+1 = �±

(
bS

n

)
+ cS

n. (56)

Unfortunately, when we want to express cS
n , the formula is more complicated:

bS
n = cS

n + �±
(
cS
n

)
+ (−1)n−1knS × Sx. (57)

We can write formally

cS
n = (id + �±)−1

[
bS

n + (−1)nknS × Sx

]
, (58)

but the above relation cannot be used to calculate recursion operators, since it involves the
numbers kn, which are found using another recursion process. However, there is other way
of approaching the problem, that works for arbitrary K, which we are going to present in the
following section.

Remark 2. Of course, additional efforts are needed here in order to give meaning to the
operator (id + �±)−1, since as is known, [10], the continuous spectrum of �± fills up the real
line. The considerations in [10] are done for the algebra sl(2, C), but since su(2) ∼ R

3 (as
algebras), then also C

3 ∼ sl(2, C) and it is easy to ‘translate’ all the results and formulae to
the case when we are working in C

3 or R
3.

5. The recursion operator for the LLp hierarchy

Let us first compare the LLp chain system with the chain system obtained in [1] for elliptic
pencil of Lax pairs. We shall call it the LLe chain system. It is given by

S × a0 = 0

S × bn = (an)x

S × an+1 = 1
4 [(bn)x + C(S) × an]

n = 0, 1, 2, . . . .

(59)

Here C is the diagonal matrix,

C = diag(r1 − r3, r2 − r3, 0) = R − r31 (60)

and the hierarchy is calculated starting from a0 = −S. Then b0 = S × Sx , and the LLe
hierarchy of evolution equations is given by

St = (bn)x + C(S) × an

n = 0, 1, 2, . . . .
(61)



2420 A B Yanovski

The first equation in the hierarchy is the LL equation. The recursion operator, obtained in [1],
and since then considered in the literature as the recursion operator for the LL equation, has
the form

	LL
± (h) = 1

4 (�±)2h − 1
4 S

× {
C(S) × h + (Sx)∂

−1
x (〈S, C(S) × h〉) + C(S) × S∂−1

x (〈S, (h)x〉)
}
, (62)

where it is assumed that hS = h. According to the explanations of the authors, ∂−1
x is the

inverse of the x-derivative operator ∂x and ∂−1
x (0) is understood as constant. (See the discussion

after A− has been introduced in (77).) Then

cn+1 = 	LL
± (cn), n = 0, 1, 2, . . . , (63)

where

cn ≡ −S × [(bn)x + C(S) × an]. (64)

In [1] it has been shown by direct calculations that the adjoint operator
(
	LL

±
)∗

is a Nijenhuis
tensor field relating two Poisson structures.

Let us come back to LLp. Though the formulae (40) permit to calculate the hierarchy, it is
good to have a recursion operator. This operator must relate bS

n+1 and bS
n as does the operator

�± for the HF chain system. We start with the observation that in the equations (39) appears
the operator A:

A(h) ≡ dh
dx

− K(S) × h, (65)

which relates cn and bn. If it is invertible, one can eliminate cn and arrive at the desired result,
just as has been done for the HFI system. For this reason let us consider A more closely.
The natural domain Dn of A consists of the differentiable functions h : R �→ C

3. However,
since we expect to use A in the LLp chain system, we restrict Dn to the set D of the functions
h(x), such that (sw) lim h(x) = (

0, 0, h0
3

)
. (Here h0

3 is some constant). In order to perform
our constructions we need additional assumptions on S(x). We shall assume not only that
(sw) lim S(x) = (0, 0, 1), but also that

|S1,2(x)| � H exp(−(|Im(j3)| + ε)|x|), (66)

where H, ε are some positive constants. (Less restrictive conditions can be introduced, but
since we want only to justify our constructions and not to develop the spectral theory of A,
we shall use these ones.)

Proposition 5. If the potential function S(x) satisfies the above conditions, then for any fixed
constant h0

3 there exists unique h(x) ∈ Dn, such that Ah = 0, limx→−∞ h(x) = (
0, 0, h0

3

)
.

Proof. Let h ∈ Dn be such that

dh
dx

− K(S) × h = 0

lim
x→−∞ h(x) = (

0, 0, h0
3

)
.

(67)

We reformulate our problem in order to put it in a more convenient form. From the algebra
C

3 (with respect to the cross-product), we pass to the isomorphic algebra sl(2), that is instead
of h(x), S(x) we introduce the matrix functions h(x), S(x) etc defined as
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h(x) =
3∑

s=1

hs(x)σs

S(x) =
3∑

s=1

Ss(x)σs, S0 = σ3 (68)

K(S) =
3∑

s=1

jsSs(x)σs,

where σs, 1 � s � 3 are the Pauli matrices. The inner product 〈g, h〉 = ∑3
s=1 hsgs of two

vectors 〈g, h〉 can be written as 2B(h, g) where B(h, g) is the Killing form of sl(2). Indeed, as
is known, for sl(2) holds B(h, g) = 1

4 tr(hg) and so B(σs, σl) = 1
2δsl . We denote by the same

letter the operator that corresponds to A under the isomorphism C
3 ∼ sl(2), that is, when A

acts on sl(2)-valued functions, it takes the form

A(h) = dh

dx
+

i

2
[K(S), h]. (69)

Then the equation (67) reads

dh

dx
+

i

2
[K(S), h] = 0. (70)

Next we consider the following auxiliary linear problem, closely related to (70):

dψ

dx
+

i

2
K(S)ψ = 0

lim
x→−∞ exp

(
−ix

j3

2
σ3

)
ψ(x) = 1.

(71)

If we put ψ̃(x) = exp
(−ix j3

2 σ3
)
ψ(x), then as easily checked, (71) is equivalent to the

following integral equation for ψ̃(x):

ψ̃(x) = 1 − i

2

∫ x

−∞
e(−iy j3

2 σ3)(K(S) − j3σ3) e(iy j3
2 σ3)ψ̃(y) dy, (72)

or

ψ̃(x) = 1 − i

2

∫ x

−∞

(
j3(S3(y) − 1) (j1S1(y) − ij2S2(y)) eiyj3

(j1S1(y) − ij2S2(y)) e−iyj3 −j3(S3(y) − 1)

)
ψ̃(y) dy.

(73)

The assumption (66) ensures that the above integral equation is of Volterra type, since its
kernel (with respect to the matrix norm) is bounded by M exp(−ε|x|), M = constant.
Therefore, (66) has a unique solution and it is an invertible matrix. (For the properties of
such integral equations see [6], the above linear problem is similar to the auxiliary problem
for the Heisenberg ferromagnet equation.) As a consequence, (71) has a unique solution and
it is an invertible matrix too. Suppose ψ is a solution of (71). Then the following properties
are easily verified:

• If C is a constant 2 × 2 matrix, then ψCψ−1(x) satisfies the equation (70).
• Let B(X, Y ) be the Killing form of the algebra sl(2). Suppose h1(x), h2(x) are

arbitrary functions with values in sl(2) satisfying (70). Then the derivative of r(x) ≡
B(h1(x), h2(x)) vanishes, that is, r(x) = constanat.
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From the above easily follows, that if h(x) is a function with values in sl(2) satisfying (70), it
is necessarily of the form:

h(x) =
3∑

s=1

asψσsψ
−1(x), as = constant. (74)

Since the asymptotic when x → −∞ of the right-hand side is

(a1 cos(j3x) + a2 sin(j3x))σ1 + (−a1 sin(j3x) + a2 cos(j3x))σ2 + a3σ3, (75)

the function h(x) can tend to h0
3 only if as = 0 s = 1, 2 and a3 = h0

3. The proposition is
proved. �

Corollary 2. If the limit lim|x|→∞ f (x) is known, the function f (x) ∈ D can be recovered
uniquely from its image g = A(f ). In particular, restricted to the vector space of Schwartz-
type functions, the operator A has trivial kernel and is invertible.

As to the calculation the inverse operator A−1, it can be done using the function ψ(x). Indeed,
consider (70) with a right side, that is,

dh

dx
+

i

2
[K(S), h] = g(x), (76)

where g(x) is some Schwartz-type function. Then, since B(σs, σl) = − 1
4δsl , one can check

that we have the following solution of our problem (provided that the integral converges and
we can differentiate it):

h(x) = R(−)g(x)

= aψσ3ψ
−1(x) +

1

2

3∑
s=1

ψσsψ
−1(x)

∫ x

−∞
B(g(y), ψσsψ

−1(y)) dy. (77)

As it should be, the solution depends on one arbitrary parameter a. If we know that
limx→−∞ h(x) = 0, then a = 0. In this case the solution is unique, the solution is also
unique if we require for it the asymptotic: h(x) → aσ3, a 	= 0 when x → −∞ and a is some
fixed constant. In both these cases one can write R(−) = A−1. However, we still have some
difficulties. Indeed, for the geometric interpretations of the soliton equations hierarchies we
must ensure that if A−1g(x) satisfies limx→−∞ A−1g(x) = a then limx→+∞ A−1g(x) = a

too. We can see that the above, generally speaking, is not true. But if this happens, it simply
means that g is not in the image of A. We also note that using solutions ϕ(x) of the differential
equation in (71), but this time defined by their behaviour at +∞ instead at −∞, we get another
expression for the inverse. In order to distinguish these expressions we write A−1

− and A−1
+ .

As a matter of fact, we have

h(x) = A−1
+ g(x) = R(+)g(x)

= aϕσ3ϕ
−1(x) +

1

2

3∑
s=1

ϕσsϕ
−1(x)

∫ x

+∞
B(g(y), ϕσsϕ

−1(y)) dy. (78)

Since ϕ and ψ are fundamental solutions of the same system of differential equations, there
exists a non-degenerate constant matrix T such that ψ = ϕT . The properties of the Killing
form allow us to obtain that if h(x) has the same asymptotic at ±∞, then

A−1
+ g = A−1

(−)g(x) +
1

2

3∑
s=1

ϕσsϕ
−1(x)

∫ +∞

−∞
B(g(y), ϕσsϕ

−1(y)) dy. (79)
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There is no contradiction here, because in the case when g(x) = A(h), where h is such that
(sw) lim h(x) = aσ3, after integrating by parts and using the properties of the form B one can
show that the integral in the right-hand side vanishes and A−1

− g = A−1
+ g. The above again

shows that inverting A one must be sure that one acts on functions that belong to the image of
A.

The difficulties we have encountered in inverting some operators are common in the
geometric approaches to the soliton equations and in theory of the recursion operators, though
they are simpler in the case when the potentials vanish at infinity. Even in that case, one
usually must invert ∂x (as in the case of the recursion operators for the HFeq) and of course
the inverse is unique up to an additive constant. Different authors choose for the inverse one
of the operators∫ x

−∞
,

∫ x

+∞
,

1

2

(∫ x

−∞
+

∫ x

+∞

)
(80)

(the last being chosen in order to assure some symmetry properties) or simply write ∂−1
x . Of

course, there is no contradiction, since each time one uses recursion operators it is possible
to prove that the integrands are total derivatives of polynomial functions on the potential and
its derivatives (at least it is the case for the NLS hierarchy and the HF hierarchy it is so) or in
other words, the integrands belong to the image of ∂x . What happens in our case is similar.
For example, solving

dc1

dx
− K(S) × c1 = −K(S × b1) = K(Sx(x)) (81)

for c1 gives K(S) + h, where h satisfies the corresponding homogeneous equation. If we
assume that the solution tends to K(S0) when |x| → ∞ then c1 = K(S(x)). The formula for
the cn’s, see (41), shows that we can find the limit of cn(x) as |x| → ∞ and then cn can be
uniquely determined from the equation:

(cn)x − K(S) × cn = −K(S × bn). (82)

Therefore, A−1
± (K(S × bn)) is well defined.

Remark 3. The formula (41) avoids solving the differential equation for cn, but it gives cn as
a function of b0, b1, . . . , bn−1. What we want however is an expression that depends only on
bn.

Having in mind the properties of the operator A, discussed in the above, the LLp chain
system (39) can be written into the form

S × b0 = 0

S × bn+1 = −(bn)x − S × KA−1
± K(S × bn) (83)

n = 0, 1, . . . ,

where A−1
± is used in the sense we discussed. The difficulties we mentioned can be overcome

only after the thorough study of the spectral theory of the operator L in the Lax representation;
in the present paper we limit ourselves to the geometric interpretation of the hierarchies.

For an arbitrary vector q, the fact that S ∈ S
2 entails qS = −S × (S × q), and we obtain

Proposition 6. The solution of the LLp chain system can be put into the form:

b0 = S

b1 = S × Sx (84)

bS
n+1 = �L

±
(
bS

n

)
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bn+1 = bS
n+1 + S

∫ x

±∞

〈
bS

n+1, Sx

〉
dx

n = 1, 2, . . . ,

(85)

where

�L
±h ≡ �±(h) + S × [

S × KA−1
± K(S × h)

] = �±(h) +
[
KA−1

± K(S × h)
]S

(86)

(of course, here we assume 〈h(x), S(x)〉 = 0).

The operator �L
± is a recursion operator for the LLp chain system. When K = 0

it reduces to �±—the recursion operator for the HF chain system, an advantage over the
recursion operator obtained in [1], which reduces to �2

±. Its flaw seems the presence of A−1
± ,

which cannot be expressed in terms of S(x) and its derivatives (in an explicit form). But
since we have a nice recursion formula which gives the values KA−1

± K(S × bn), this flaw
is only apparent, actually one calculates the members of the LLp hierarchy at least as easily
as one calculates them for the LLe hierarchy. There is however another thing that makes
both operators quite different. The point is that, generally speaking, the LLp chain system
is complex, and we cannot simply consider K real, because the system of interest (the LL
equation) is obtained exactly when the entries of K are purely imaginary. But since the LL
equation is real, it is desirable to have a real hierarchy. The expression for the generating
operator, �L

±, shows that it is complex too and hence the quantities bn are complex. The
same is deduced easily from the formula for cn, cf (41). The entries of the matrices K(q) are
homogeneous polynomials of degree q in the entries of K, see [3], and hence for even q they
are real and for odd q they are imaginary. This, together with

S × bn+1 = −(bn)x + S × K(cn), (87)

show that, generally speaking, bn have imaginary components. The imaginary terms vanish
up to n = 3 when we start by b0 = S, c0 = 0, because KK(2) = −i|j1j2j3|1 and there are no
terms proportional to i in the equation for b3. However, the same relation shows that in the
expression for b4 there is an imaginary term, proportional to S × Sx . What happens is that in
the imaginary part of the hierarchy we have linear combinations of the same vector fields as
in the real part. However, in the present context they appear together and is not clear how to
separate them. The above also shows that one cannot expect that the recursion operator for
the elliptic pencil will be the square of the recursion operator we have introduced. There must
be some more subtle relation between them, a relation that will be revealed after the relation
between the polynomial and elliptic pencils is better understood.

We are going now to show that for �L = �L
± (we consider the two operators as equivalent)

we have the usual geometric interpretation of the recursion operators, that is, �L relates two
Poisson structures and as a consequence its adjoint is a Nijenhuis tensor.

6. The geometric picture

6.1. Compatible Poisson–Lie tensors related to so(4)

As is well known, Poisson brackets over a manifoldM can be introduced either by a symplectic
form or by a Poisson tensor (Poisson structure). The symplectic case is classic, as to the
Poisson structure, it is relatively new, though according to [31, 32] Lie’s book, [15] contained
the essentials of the theory of the Poisson manifolds (called in [15] ‘function groups’) and
not only, as generally believed, only the so-called ‘Poisson–Lie’ structures on duals of Lie
algebras. Also, as claimed by the same authors, in a book by Carathéodory [4] there has been
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a rather complete account of the theory based on even earlier work of Lie. In modern terms
and notations the theory of the Poisson structures is described in [21, 14]. Below we remind
some facts about these structures.

Let Tm(M) and T ∗
m(M) be the tangent and the cotangent spaces at the point m of

the manifold M. A Poisson tensor is a smooth field of linear maps m → Pm ∈
End(T ∗

m(M), Tm(M)) having the properties:

(i) P ∗
m = −Pm

(ii) [P,P ]S = 0.
(88)

Here [ , ]S denotes the so-called Schouten bracket of two tensor fields, which in the case of
two (1,1) tensors P and Q have the form:

[P,Q]S(γ1, γ2, γ3) ≡ 〈
QLPγ1(γ2), γ3

〉
+

〈
PLQγ1(γ2), γ3

〉
+ cycl(1, 2, 3). (89)

In the above expression γ1, γ2, γ3 are 1-forms, (fields of covectors), LPγ is the Lie derivative
corresponding to the vector field Pγ and 〈 , 〉 means the canonical pairing between vector fields
and covector fields (1-forms). The notation ‘cycl (1,2,3)’ in the right-hand side means that
one must add to the expression all the terms obtained from the first two by cyclic permutation
of the indices 1,2,3. The condition (ii) ensures the Jacobi identity and (i) guarantees the
skew-symmetry of the Poisson bracket

{f, g} = 〈P df, dg〉, (90)

where f and g are functions over the manifold M, or the ‘generalized’ Poisson bracket

{γ1, γ2} = −d〈Pγ1, γ2〉, (91)

where γ1 and γ1 are two closed 1-forms on M.

Remark 4. When we write P ∗ = −P we assume that the spaces T ∗∗
m (M) and Tm(M) can be

identified. This of course is always possible if the manifold M is finite dimensional, but if it
is not, one has only Tm(M) ⊂ T ∗∗

m (M). Then P ∗ is usually understood as the formal adjoint
of P.

A manifold with a Poisson tensor on it is called a Poisson manifold.
There is a canonical way to equip the dual space G∗ of a Lie algebra G with a Poisson

structure, provided one can identify the vector spaces G∗∗ and G. This structure was discovered
by Lie, [15] and was rediscovered later by several authors, [12, 29]. Suppose µ ∈ G∗. Then
one has

Tµ(G∗) = G∗, T ∗
µ(G∗) = G∗∗ = G. (92)

The canonical Poisson structure over G∗ is defined by the following field of linear maps:

µ → Lµ ∈ Hom(G,G∗) : Lµ(ξ) = −ad∗
ξµ, ξ ∈ G ∼ G∗∗. (93)

The tensor L is called the Poisson–Lie tensor or the Kirillov tensor and the Poisson bracket
defined by it is called the Poisson–Lie bracket, Kirillov bracket, Berezin bracket etc. We
shall call the above tensor as the Poisson–Lie tensor and the corresponding bracket as the
Poisson–Lie bracket.

If there exists symmetric non-degenerate bi-linear form B(X, Y ) over G, invariant with
respect to the adjoint action of G, then one can identify in a canonical way G∗ and G, the
adjoint and the coadjoint action and one can define Poisson structure over the algebra G:

q → Lq ∈ End(G) : Lq(ξ) = adξ q, ξ ∈ G ∼ G∗. (94)
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Consider now the algebra so(4)J . As a matter of fact, our interest the pencils of Lie algebras is
motivated by the following simple observation—for arbitrary symmetric J the usual bracket
and the bracket [ , ]J are compatible, that is, their sum is a Lie bracket. Then the corresponding
Poisson–Lie tensors are compatible too. Taking into account the existence of the invariant
bi-linear form BT (X, Y ) we have

Theorem 1. For each symmetric J there exists 2-parametric family of Poisson–Lie structures
over the manifold M = so(4):

q → P (a,b)
q ∈ End(so(4), so(4))

P (a,b)
q (ξ) = a[adξ q] + b

[
adJ

ξ q
]
, ξ ∈ so(4) ∼ so(4)∗.

(95)

(a, b are the parameters and X �→ adJ
X is the adjoint representation of so(4)J ).

6.2. The Gel’fand–Fuchs cocycle and related Poisson structures, so(4) case

The Poisson tensors used in the theory of the infinite-dimensional integrable equations are
usually defined over manifolds consisting of functions defined on the real line and often include
differentiation. It is known that there is an elegant way to define such tensors from tensors
defined on finite-dimensional Lie algebras. Let G0[x] be the infinite-dimensional manifold of
the smooth functions f (x) defined on the real line, with values in the finite-dimensional Lie
algebra G, tending fast enough to some constant value f0 ∈ G when |x| → ∞. For obvious
reasons we take the tangent space Tf (G0[x]) at the point f ∈ G0[x] to be the vector space
consisting of all Schwartz-type functions ξ(x) on the line with values in G. We shall denote
this space by G[x]. Clearly, if we define the Lie algebra operation point-wise, both G0[x] and
G[x] become Lie algebras and

[G[x],G0[x]] ⊂ G[x]. (96)

In order to introduce the Poisson structure over G0[x] we remind that if H is a Lie algebra
and γ is a fixed 2-cocycle of the trivial action of H on the scalars, then one can define the
following Poisson tensor over H∗:

µ → Pµ : Pµ(ξ) = ad∗
ξµ + γ (ξ, .), ξ ∈ H ∼ H∗∗. (97)

This construction is related to the central extensions of H, see [11], but we shall not elaborate
about this topic. As mentioned, the above construction is often applied in the theory of the
soliton equations. In that case H is chosen to be G[x]—the algebra of Schwartz-type functions
on R or C, taking values in a finite-dimensional Lie algebra G (algebraic operations defined
point-wise); see for example [24–27, 21, 6]. If B0(X, Y ) is an invariant, non-degenerate
bi-linear form on G (in the case when the algebra G is semisimple B0 is usually the Killing
form B, but in our case it will be different) there exists the following famous 2-cocycle of
G[x]—the Gel’fand–Fuchs cocycle (sometimes called also Maurer–Cartan cocycle [6]):

γ (ξ, η) = c

∫ +∞

−∞
B0(∂xξ, η(x)) dx, ξ, η ∈ G[x], c = constant, ∂x ≡ ∂

∂x
. (98)

Allowing some lack of rigor we say that we identify G[x] and G[x]∗ using the invariant,
non-degenerate bi-linear form on G[x]:

〈〈ξ, η〉〉 =
∫ +∞

−∞
B0(ξ(x), η(x)) dx, ξ, η ∈ G[x], (99)

constructed from the symmetric invariant non-degenerate bi-linear form B0 on G (G[x] and
G[x]∗ cannot be identified in the proper sense so we must treat some elements as distributions).
As a result we obtain the following Poisson tensor:

Pq(ξ) = [ξ, q] + c∂xξ. (100)
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It can be verified that the above expression actually defines a Poisson tensor also in the case
when the potential q belongs to the set of all smooth functions with values in G tending fast
enough to constant element from G as |x| → ∞, that is, to G0[x]. Applying these constructions
to G = so(4)(a,b), and using the invariant form BT instead of B0 in the definitions of the cocycle
γ and of the inner product 〈〈X, Y 〉〉, we obtain

Theorem 2. Over the manifold so(4)0[x] there exists a 3-parametric family of Poisson tensor
fields:

A → P
(a,b,c)
A = −P

(a,b)
A + c∂x, A ∈ so(4)0[x]. (101)

The Poisson brackets are constructed in the following way. First, we identify any linear
form α of the type

α(Y ) = 〈〈X, Y 〉〉 (102)

with the function X(x), taking values in so(4). (Of course, X(x) can also be a distribution.)
Then if F [A] and G[A] are two functionals we identify their differentials dF and dG with
two so(4)-valued functions X(x) and Y (x) and construct the Poisson bracket

{F,G}(a,b,c) = 〈〈−P
(a,b)
A (X) + c∂xX, Y

〉〉
=

∫ +∞

−∞
BT (a[A(x), Y (x)] + b[A(x),X(x)]J + c∂xX(x), Y (x)) dx. (103)

Upon our knowledge, the first time tensors of the type (101) have been used in [33] to describe
the Hamiltonian properties of the chiral fields equations hierarchy. We shall use them now to
describe the Hamiltonian properties of the LLp hierarchy.

6.3. The P–N structure for the LL hierarchy, obtained through polynomial pencil

We are going to apply some of the results outlined in the previous section for the manifold of
potentials MI

S , but first some general geometric facts are needed. Suppose M is a manifold,
endowed with two compatible Poisson structures. This means that on M are defined two
Poisson tensors P and Q, and P + Q also is a Poisson tensor. Then we have, see (89):

[P,P ]S = 0, [Q,Q]S = 0, [P,Q]S = 0, (104)

where by [ , ]S is denoted the Schouten bracket. The existence of compatible Poisson
structures (tensors) in one of the characteristic features of the integrable equations theory
[8, 17, 24, 26, 27]. If in addition one of the tensors, for example Q, is invertible, then the
pair (Q,N), (N ≡ �∗ ≡ Q−1 ◦ P) endows the manifold on which P,Q are defined with
the so-called Poisson–Nijenhuis structure (P–N structure) see [16]. N is a Nijenhuis tensor
and this structure is responsible for the infinite Abelian algebra of symmetries one has for
the soliton equations. For more details about the above structure we refer to [17], in what
follows are going to define such a structure on MI

S . However, the tensors we shall use must
be restricted, because they are defined on so(4)0[x]. Also, the tensor we want to invert is not
kernel free, so we cannot immediately perform the desired construction. Such situation occurs
frequently and if in the compatible pair (P,Q) the Poisson tensor Q is not invertible, one can
restrict it to some integral leaf of the distribution m �→ im(Qm). In the finite-dimensional case,
as is well known, on any such leaf Q allows restriction and the restricted tensor is invertible.
Usually, one can do the same also in the infinite-dimensional case. The restriction of the other
tensor (the tensor P), generally speaking, is more difficult, since restrictions of Poisson tensors
are not always possible. However, there are sufficient conditions for this sort of restriction
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which for the soliton equation case are usually satisfied. These conditions are described in a
theorem, proved in a general form in [20], see also [22, 23], and in a simpler version (which
we present below) in [18, 19], where also a number of applications to the soliton equation
theory are given.

Theorem 3. Let M be Poisson manifold and N ⊂ M be a submanifold. Let us denote by i
the natural inclusion map of N into M, by X ∗

P (N )m the subspace of covectors α ∈ T ∗
m(M)

such that

Pm(α) ∈ [di]m(Tm(N )) = im([di]m), m ∈ N , (105)

by T ⊥(N )m—the set of all covectors at m ∈ M vanishing on the subspace im([di]m), m ∈ N
(also called the annihilator of im([di]m) in T ∗

m(M)). Suppose the following relations hold:

X ∗
P (N )m + T ⊥(N )m = T ∗

m(M), m ∈ N (106)

X ∗
P (N )m ∩ T ⊥(N )m ⊂ ker(Pm), m ∈ N . (107)

Then there exists a unique Poisson tensor P̄ on N , i-related to P, that is, satisfying:

Pm = [di]m ◦ P̄ m ◦ [di]∗m, m ∈ N . (108)

Now, looking at the LLp hierarchy of evolution equations, cf (14), (16), and using the
definition of the tensor field P

(a,b,c)
A one sees that one can cast them into the following

equivalent forms:

At = P
( 1

2 ,0,0)

A Bn+1, At = P
(0,− 1

2 ,1)

A Bn n = 0, 1, . . . , (109)

where as we have seen the two tensors are compatible. We cannot give immediately geometric
interpretation of Bn but (109) draws our attention to the above tensors. For the sake of brevity
we drop the complicated upper indices and denote the tensors in the above simply by P and
Q, that is,

P
(

1
2 ,0,0)

A = QA = 1
2 adA, P

(0,− 1
2 ,1)

A = PA = ∂x − 1
2 adJ

A. (110)

The tensor Q is familiar, in vector representation it defines the so-called first Hamiltonian
structure on MS , the tensor P is more ‘exotic’.

Now we want to restrict these tensors on the space of potentials

MI
S = {A = {S}I , S(x) ∈ MS} ∼ MS. (111)

The first tensor (Q) is immediately restricted, its form remains the same, so we denote the
restriction by the same letter. It remains to restrict the second tensor (P). In order to check the
conditions that appear in theorem 3 we calculate

TA

(
MI

S

) = {X : X = [A, Y ], Y ∈ GI [x]}
T ⊥

A

(
MI

S

) = {f A + Y ∗ : f ∈ S(R), Y ∗ ∈ GII [x]}, (112)

where S(R) denotes the space of the Schwartz functions on the line. As explained, we identify
the tangent and cotangent vectors using the form 〈〈 , 〉〉, but we write star as superscript when
we are dealing with covectors in order to make the geometric meaning clearer. Next

X ∗
P

(
MI

S

)
A

= {X∗ + Y ∗ : X∗ ∈ GI [x], Y ∗ ∈ GII [x]}, (113)

where X∗ and Y ∗ satisfy

(X∗)x − 1
2 [A, α(Y ∗)] ∈ TA

(
MI

S

)
(Y ∗)x − 1

2 [α(A), Y ∗] = − 1
2α([A,X∗]).

(114)
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The first of these relations implies that

BT (X∗
x(x), A(x)) = 0. (115)

The second one is equivalent to the pair of vector equations:

cx − K(S) × c = −K(S × b) (116)

for X∗ = {b}I , C∗ = {c}II . As one can see the operator ∂x − 1
2 adα(A) is the matrix form of

the operator A, introduced in (65), so we shall denote it by the same letter. Then the equation
from (114) reads

A(Y ∗) = − 1
2α([A,X∗]). (117)

The domain D of the operator A is the set of the smooth functions Y ∗(x) taking values in GII

and tending fast enough to some constants {(0, 0, a)}II . In this case, as we have seen, the
operators A−1

± are well defined on the image of A and give the same result. From the fact that
A has trivial kernel when restricted to GII [x] we get(

X ∗
P

(
MI

S

)
A

) ∩ T ⊥
A

(
MI

S

) = {0}. (118)

Finally, if X∗ + Y ∗ is a covector from T ∗
A(so(4)0[x]), making use of (36) we obtain

X∗ + Y ∗ = Z∗
1 + Z∗

2

Z∗
1 = X∗ +

1

8
A

∫ x

±∞
BT (A(y),Xy(y)) dy − 1

2
A−1

± (α([A,X∗])) (119)

Z∗
2 = Y ∗ − 1

8
A

∫ x

±∞
BT (A(y),Xy(y)) dy +

1

2
A−1

± (α([A,X∗])).

Since Z∗
1 ∈ X ∗

P

(
MI

S

)
A
,Z∗

2 ∈ T ⊥
A

(
MI

S

)
the above shows that(

X ∗
P

(
MI

S

)
A

)
+ T ⊥

A

(
MI

S

) = T ∗
A(so(4)0[x]). (120)

Therefore, the requirement of theorem 3 are fulfilled and P allows restriction. According to
the prescriptions of this theorem, for X∗ ∈ T ∗

A

(
MI

S

)
one must take first i∗(X∗), where i is the

canonical inclusion map, then represent it as a sum Y ∗
1 + Y ∗

2 , where Y ∗
1 ∈ X ∗

P

(
MI

S

)
A
, Y ∗

2 ∈
T ⊥

A

(
MI

S

)
, and the restricted tensor will satisfy P̄ A(X∗) = PA(Y ∗

1 ). In our case i∗(X∗) = X∗

so we get

P̄ A(X∗) = ∂x(X
∗) +

1

8
Ax

∫ x

±∞
BT (X∗

y(y), A(y)) dy

+
1

8
BT (X∗

x, A)A − 1

4

[
A,

(
α ◦ A−1

± ◦ α
)
([A,X∗])

]

= π(∂x(X
∗)) +

1

8
Ax

∫ x

±∞
BT (X∗

y(y), A(y)) dy − 1

4

[
A,A−1

± (α([A,X∗])
]
, (121)

where π denotes the projection in so(4) onto the subspace, orthogonal to A. Also, since
BT (X∗(x), A(x)) = 0, one has

BT (Xx(x), A(x)) = −BT (X(x),Ax(x)). (122)

Finally we obtain

Proposition 7. On the manifold of potentials MI
S there exists a restriction P̄ of the Poisson

tensor P, having the form:

P̄ A(X∗) = π(∂x(X
∗)) − 1

8
Ax

∫ x

±∞
BT (X∗(y), Ay(y)) dy − 1

4

[
A,

(
α ◦ A−1

± ◦ α
)
([A,X∗])

]
,

(123)

where X∗ ∈ T ∗
A

(
MI

S

)
.
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Since on TA

(
MI

S

)
the operator QA is invertible, we are able to calculate �L

± = Q−1
A ◦ P̄ A:

�L
±(X∗) = −1

2
[A, ∂x(X

∗)] +
1

16
[A,Ax]

∫ x

±∞
BT (X∗(y), Ay) dy

− 1

2

(
π ◦ α ◦ A−1

± ◦ α ◦ adA

)
(X∗)

= �±(X∗) − 1

2

(
π ◦ α ◦ A−1

± ◦ α ◦ adA

)
(X∗). (124)

(Of course, in the above we assume that X∗ satisfies BT (X∗(x), A(x)) = 0). Some explications
are needed for the last formula. If we calculate the above in vector representation we shall get
that the term

�±(X∗) = −1

2
[A, ∂x(X

∗)] +
1

16
[A,Ax]

∫ x

±∞
BT (X∗(y), Ay) dy, (125)

for X∗ = {b}I is equal to {�±b}I , and the whole expression in (124) equals

�L
±(X∗) = {

�±(b) +
[(

KA−1
± K

)
(S × b)

]S}
I
, (126)

which explains why we denote the operator Q−1
A ◦ P̄ A by �L

±, and the operator �± in (125)
by �±—they are just the recursion operators for LLp and HF in vector representation, cf (86)
and (46). As we have seen, the action of A−1

+ and A−1
+ gives the same result, so below we

write �L instead of �L
±. The general theory of compatible Poisson tensors then yields

Theorem 4. The pair (Q,NL = (�L)∗) endows the manifold of potentials MI
S (or MI

S) with
a P–N structure.

6.4. Hamiltonian properties of the LLp hierarchy

Let us consider again the equations forming the LLp hierarchy, (14), (16). According to (109)
we can write them as

At = QA(Bn+1) = PA(Bn), n = 0, 1, . . . , (127)

where Bn = Fn +Gn (Fn ∈ GI ,Gn ∈ GII ) satisfy the chain system (15), or equivalently (37),
which for our convenience we write again

[A,F0] = 0
1
2 [A,Fn+1] = (Fn)x − 1

2 [A, α(Gn)] (128)

(Gn)x − 1
2 [α(A),Gn] + 1

2α([A,Fn]) = 0.

We want to give geometric interpretation to these relations. The third equation is equivalent
to

Gn = − 1
2A±(α([A,π(Fn)]).

As to the second equation, first it shows that (Fn)x ∈ TA

(
MI

S

)
and therefore

BT (A(x), (Fn(x))x) = 0. Next, since Fn = π(Fn) + BT (A, Fn)A and

BT (A, Fn)(x) =
∫ x

±∞
∂yBT (A(y), Fn(y)) dy =

∫ x

±∞
BT (Ay(y), Fn(y)) dy,

it is easily seen that it can be written as

QA(π(Fn+1)) = P̄ A(π(Fn)). (129)

But then the hierarchy (14), (16) can also be cast into the form:

At = QA(π(Fn+1)), At = P̄ A(π(Fn)). (130)
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We therefore can interpret π(Fn) as 1-forms on MI
S and the above equations as Hamiltonian

equations, provided π(Fn) = dHn, where Hn are the Hamiltonians for these equations. The
theory of the P–N manifolds shows that if on a P–N manifold the 1-form β is fundamental
(corresponds to fundamental field of the structure) then β is closed and if β, N∗β are closed,
then (N∗)kβ, k � 2 are closed too. In our case this means that all π(Fn) are closed forms.
Indeed, π(F1) is closed and fundamental (it can be shown exactly as was done in [33] for
the O(3) chiral fields system). The form π(F2) is even exact, since it corresponds to the LL
equation and it is Hamiltonian. So the equations (130), starting from the second one (the LLeq)
are Hamiltonian and even bi-Hamiltonian in a generalized sense. As for the proof that there
exist well-defined functionals Hn, such that π(Fn) = dHn (in general one has it starting from
some n0), this fact usually follows from some other considerations. For example, one gets this
result for the HF equation and NLS equation from the spectral theory for the corresponding
auxiliary liner problem and the spectral theory of the recursion operators. It is well known that
for NLSeq and HFeq the Hamiltonians can be obtained through the recursion operators [10],
though their locality is not immediately seen and needs to be proved [9]. We shall assume that
Hn exist for n � 2. If so, the equations (130), together with (129), show that the nonlinear
evolution equation hierarchy, related to the polynomial pencil is bi-Hamiltonian and is related
to the P–N structure described in theorem 4. From the general theory of the P–N manifolds
we get

Corollary 3. The nonlinear equations from the hierarchy (16) (from the hierarchy (17)), are
Hamiltonian, and their Hamiltonians are in involution.

Finally, we note that the above corollary can be obtained also directly. Indeed, if we
denote by {Hn,Hm}Q, {Hn,Hm}P the Poisson brackets defined by Q and P̄ respectively, we
can write the equalities:

{Hn,Hm}Q ≡ 1

2
〈〈[A,π(Fn)], π(Fm)〉〉

= 〈〈P̄ (π(Fn−1))], π(Fm)〉〉 ≡ {Hn−1,Hm}P (131)

1

2
〈〈[A,π(Fn)], π(Fm)〉〉 = 1

2
〈〈[A,Bn], Bm〉〉

= 1

2

∫ +∞

−∞
BT ([A(x), Bn(x)], Bm(x)) dx (132)

{Hn−1,Hm}P ≡ 〈〈P̄ (π(Fn−1))], π(Fm)〉〉
=

∫ +∞

−∞
BT (∂xBn−1(x) − 1

2
[A(x), Bn−1(x)]J , Bm(x)) dx. (133)

Now we implement a technique described in [8] and frequently used in similar proofs. Let us
suppose for definitiveness that n > m. Using that adJ

X is skew-symmetric with respect to the
bi-linear form BT , integrating by parts and taking into account the properties of the matrices
Bn, see (45), we get that

{Hn,Hm}Q = {Hn−1,Hm+1}Q. (134)

Applying this identity sufficiently many times we arrive at the equation of the type

{Hn,Hm}Q = {Hn−1,Hm+1}Q = · · · = {Hk,Hk}Q (135)

if n − m is even, or to the equation of the type

{Hn,Hm}Q = {Hn−1,Hm+1}Q = · · · = {Hk,Hk−1}Q = {Hk−1,Hk}Q (136)
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if n − m is odd. In both cases we conclude that {Hn,Hm}Q = 0. From the proof it follows
also that {Hn,Hm}P = 0. This is exactly what we wanted to show.

7. Conclusion

We have considered the chain system resulting from a polynomial pencil of Lax pairs
containing a Lax pair for the Landau–Lifshitz equation, the set of integrable equations related
to that pencil and the corresponding recursion operators �L

±. We have seen that these equations
are bi-Hamiltonian, and that the recursion operators relate two compatible Poisson structures,
that is, �L

± possess the geometric meaning the recursion operators usually have. We are
able to claim that �L

± are recursion operators for the LL equation for the same reason as the
operators found by Barouch et al in [1]. The above-mentioned facts serve to further motivate
the interesting question of whether there is equivalence between the two pencils containing
L-A pairs for the Landau–Lifshitz equation—the elliptic pencil and the polynomial pencil.
We believe that this will attract the interest of the specialists.
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[19] Magri F, Morosi C and Ragnisco O 1985 Reduction techniques for infinite-dimensional Hamiltonian systems.

Some ideas and applications Commun. Math. Phys. 99 115–40
[20] Marsden J E and Ratiu T 1986 Reduction of Poisson manifolds Lett. Math. Phys. 11 161–9

http://dx.doi.org/10.1063/1.528053
http://dx.doi.org/10.1088/0305-4470/28/14/019
http://dx.doi.org/10.1088/0305-4470/29/17/028
http://dx.doi.org/10.1016/0167-2789(84)90139-8
http://dx.doi.org/10.1007/BF01211165
http://dx.doi.org/10.1070/rm1962v017n04ABEH004118
http://dx.doi.org/10.1063/1.523777
http://dx.doi.org/10.1007/BF01466596
http://dx.doi.org/10.1007/BF00398428


Recursion operators and bi-Hamiltonian formulations of the Landau–Lifshitz equation hierarchies 2433

[21] Marsden J E and Ratiu T S 1994 Introduction to Mechanics and Symmetry (New York: Springer)
[22] Ortega J-P and Ratiu T S 2004 Momentum Maps and Hamiltonian Reduction Series (Progress in Mathematics

vol 222) (Boston, MA: Birkhäuser)
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